
Flatten and Conquer
A Framework for Efficient Analysis of

String Constraints

1 Uppsala University, Sweden
2Academia Sinica, Taiwan
3 Brno University of Technology, Czech Republic
4 Linköping University, Sweden

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2,
Bui Phi Diep1, Lukáš Holík3, Ahmed Rezine4, Philipp Rümmer1

22

Consider a webpage that has two input fields: username and password

The code behind the webpage is the following:

diep

1234' OR '1'='1

SQL Injections

void Login_Authenticate(object sender, AuthenticateEventArgs e){
 SqlConnection con = new SqlConnection(@"Data Source=.\sqlexpress;Initial Catalog=MyDb;Integrated Security=True");

 adpt = new SqlDataAdapter(qry,con);
 dt = new DataTable();
 adpt.Fill(dt);
 if (dt.Rows.Count >= 1){
 Response.Redirect("index.aspx");
 }
}

string stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'";

select * from Table where name = 'diep' and passwd = '1234' OR '1'='1'

always TRUE

Detect SQL Injection via String Constraints

SQL injection is to create a SQL query that contains “ or ‘1’ = '1’”

Step 1: Identify variables

Step 2: Find forbidden patterns

stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'";

Step 3: Transform to string constraints

Step 4: Solve the string constraints

SQL_QUERY : “select * from Table where “ EXPR

EXPR : COMP | EXPR or EXPR

COMP : TERM (=|>|<) TERM

TERM : [a-z]+[0-9]*| [0-9]+ | ‘TERM’

context free
grammar

stmt = "select * from Table where name = '" . Name .
 "' and passwd = '" . Passwd . "'"

SQL_injection ∈ L(SQL_QUERY);
SQL_injection = A . " or ‘1’ = ‘1’" . B

stmt = SQL_injection

Step 3: Transform to string constraints

Step 4: Solve the string constraints

Step 1: Identify variables

Step 2: Find forbidden patterns

concatenation

SQL injection is to create a SQL query that contains “ or ‘1’ = '1’”

Detect SQL Injection via String Constraints

stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'";

SQL_QUERY : “select * from Table where “ EXPR

EXPR : COMP | EXPR or EXPR

COMP : TERM (=|>|<) TERM

TERM : [a-z]+[0-9]*| [0-9]+ | ‘TERM’

membership
equality

• Detect vulnerabilities in web applications
SQL Injection
Code Injection

• Used in Program Testing, Program Verification,
Model Checking

String Solver

✓ Applications

• Arithmetic constraints
• String equations
• Context free grammar membership
…

stmt ∈ L(SQL_QUERY);

stmt = A . " or ‘1 = 1’" . B

✓ Requirements
length(A) > 5

• Detect vulnerabilities in web applications
SQL Injection
Code Injection

• Used in Program Testing, Program Verification,
Model Checking

String Solver

✓ Applications

• Arithmetic constraints
• String equations
• Context free grammar membership
…

stmt ∈ L(SQL_QUERY);

stmt = A . " or ‘1 = 1’" . B

✓ Requirements
length(A) > 5

1. New framework for solving string constraints:

2. Open-source tool: outperforming all existing tools.

• Handle rich class of constraints: CFG membership, transducer, etc.

Contributions

• Based on Counter-Example Guided Abstract Refinement.

 constraints

Over-approx Under-approx

SAT

UNSAT

no other tools
can do

1. New framework for solving string constraints:

• Based on Counter-Example Guided Abstract Refinement.

• Handle rich class of constraints: CFG membership, transducer, etc.

 constraints

Over-approx Under-approx

SAT

UNSAT

Contributions

2. Open-source tool: outperforming all existing tools.

no other tools
can do

1. New framework for solving string constraints:

• Based on Counter-Example Guided Abstract Refinement.

• Handle rich class of constraints: CFG membership, transducer, etc.

Over-approx Under-approx

 constraints SAT

UNSAT

Contributions

2. Open-source tool: outperforming all existing tools.

no other tools
can do

1. New framework for solving string constraints:

• Based on Counter-Example Guided Abstract Refinement.

2. Open-source tool: outperforming all existing tools.

• Handle rich class of constraints: CFG membership, transducer, etc.

Over-approx Under-approx

 constraints SAT

UNSAT

Contributions

Over-approx Under-approx

 constraints SAT

UNSAT

Over
approximate
constraints

Refine

Generate
Counter-example

Restrict search
space

Using CEGAR for string constraint solving

Overview

Over-approx Under-approx

 constraints SAT

UNSAT

Using CEGAR for string constraint solving

Overview

S : a S b | S b |𝛆
X, Y ∈ L(S)

X = “a” . Y

X = Z

Grammar

Membership

Equality

Over-approx

Running Example

Step 1: Over approximate CFG constraints to regular constraints

Over-approximation
counter-example

X, Y ∈ L(S)
X, Y ∈ L(a* b*)

Step 2: Rename each occurrence of variables in equalities

X2 = Z
X1 = “a” . Y

X = Z
X = “a” . Y

S : a S b | S b |𝛆
X, Y ∈ L(S)

X = “a” . Y

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X = Z

S : a S b | S b |𝛆

3 steps

Over-approximation
counter-example

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X = “a” . Y
X = Z

X1 = “a” . Y
X2 = Z

S : a S b | S b |𝛆
X, Y ∈ L(S)

X = “a” . Y

X = Z

3 steps

X, Y ∈ L(S)
S : a S b | S b |𝛆

Step 1: Over approximate CFG constraints to regular constraints

Step 2: Rename each occurrence of variables in equalities

X, Y ∈ L(a* b*)

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

3 steps

S : a S b | S b |𝛆
X, Y ∈ L(S)

X = “a” . Y

X = Z

Step 2: Rename each occurrence of variables in equalities

X, Y ∈ L(S)
S : a S b | S b |𝛆

Step 1: Over approximate CFG constraints to regular constraints

X = “a” . Y
X = Z

X1 = “a” . Y
X2 = Z

X, Y ∈ L(a* b*)

SAT

UNSAT

"
counter-example

" correct

spurious

Norn solver
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

• original constraints unsat
• terminate

The new constraints fall into decidable fragments, can be
handled efficiently.

SAT

UNSAT

"
counter-example

" correct

spurious

Norn solver
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

• original constraints unsat
• terminate

The new constraints fall into decidable fragments, can be
handled efficiently.

SAT

UNSAT

"
counter-example

" correct

spurious

Norn solver
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

The new constraints fall into decidable fragments, can be
handled efficiently.

• original constraints unsat
• terminate

SAT

UNSAT

"
counter-example

" correct

spurious

• original constraints unsat
• terminate

Norn solver
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

The new constraints fall into decidable fragments, can be
handled efficiently.

SAT
counter-example

" correct

spurious

Norn solver
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

X1 = aa Y = a Z = aX2 = a

The new constraints fall into decidable fragments, can be
handled efficiently.

SAT
counter-example

" correct

spurious

Norn solver
[CAV14]

Step 3: Solve the approximate constraints

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

X1 = aa Y = a Z = aX2 = a

Over-approximation

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z X1 = aa Y = a Z = aX2 = a

The new constraints fall into decidable fragments, can be
handled efficiently.

Over-approx

 constraints

UNSAT

Under-approx

SAT

Overview

X1 = aa Y = a Z = aX2 = a

(ab)* (aab)*

• finite state automata

• consist of a sequence of simple loops

Definition:

Flat Automata

basic concepts

X1 = aa Y = a Z = aX2 = a SAT | UNSAT
Under-approximation

Idea: search for solutions accepted by flat automata

X, Y ∈ L(𝛆)
X = “a” . Y

X, Y, Z ∈ L(a*)

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X = Z

Step 1: Generate the minimal flat automaton that accepts the
counter-example

4 steps

Step 2: Intersect the constraints with the generated flat automaton

∩ a*

X1 = aa Y = a Z = aX2 = a SAT | UNSAT
Under-approximation

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

4 steps

X1 = aa Y = a Z = aX2 = a

Step 1: Generate the minimal flat automaton that accepts the
counter-example

Idea: search for solutions accepted by flat automata

a*

Step 2: Intersect the constraints with the generated flat automaton

∩ a*
X, Y ∈ L(𝛆)
X = “a” . Y

Z ∈ L(a*)
X = Z

SAT | UNSAT
Under-approximation

X, Y ∈ L(𝛆)
X = “a” . Y

Z ∈ L(a*)
X = Z

a*

X1 = aa Y = a Z = aX2 = a

Step 1: Generate the minimal flat automaton that accepts the
counter-example

Step 2: Intersect the constraints with the generated flat automaton

4 steps

X1 = aa Y = a Z = aX2 = a

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

Idea: search for solutions accepted by flat automata

a*

∩ a*

X, Y ∈ L(𝛆)
X = “a” . Y

Z ∈ L(a*)
X = Z

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

|X| = 0
|Y| = 0
|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0

Step 4: Feed the formulas to a SMT solver

X1 = aa Y = a Z = aX2 = a

SAT | UNSAT
Under-approximation

SMT UNSAT

X1 = aa Y = a Z = aX2 = a

X, Y ∈ L(𝛆)
X = “a” . Y

Z ∈ L(a*)
X = Z

Step 3: Convert to quantifier-free Presburger formulas

|X| = 0
|Y| = 0
|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0

Step 4: Feed the formulas to a SMT solver

Over-approx Under-approx

 constraints SAT

UNSAT

a* does not work

Overview

X1 = aa Y = a Z = aX2 = a

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

a*

Step 1: Over approximate CFG constraints to regular constraints

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

Step 2: Rename each occurrence of variables in equalities

Step 3: Refine the over-approximation

not (X1, X2, Y, Z ∈ L(a*))

Step 1: Over approximate CFG constraints to regular constraints

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

a*

Step 3: Refine the over-approximation

not (X, Y, Z ∈ L(a*)) not (X1, X2, Y, Z ∈ L(a*))

Step 2: Rename each occurrence of variables in equalities

NEW

SAT

UNSAT

"

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y
X2 = Z
not (X1, X2, Y, Z ∈ a*)

Step 4: Solve the approximate constraints

Norn

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

SAT
counter-example

" correct

spurious

NornX1, X2, Y ∈ L(a* b*)
X1 = “a” . Y

not (X1, X2, Y, Z ∈ a*)

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y

not (X1, X2, Y, Z ∈ a*)
X2 = Z X2 = Z

Step 4: Solve the approximate constraints

X1 = aab Y = ab Z = aabX2 = aab

Over-approximation

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

SAT
counter-example

" correct

spurious

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y

not (X1, X2, Y, Z ∈ a*)

X1, X2, Y ∈ L(a* b*)
X1 = “a” . Y

not (X1, X2, Y, Z ∈ a*)
X2 = Z X2 = Z

Norn

Step 4: Solve the approximate constraints

X1 = aab Y = ab Z = aabX2 = aab

X1 = aab Y = ab Z = aabX2 = aab

Overview

Over-approx

 constraints

UNSAT

Under-approx

SAT

X1 = aab Y = ab Z = aabX2 = aab

SAT | UNSAT
Under-approximation

X, Y ∈ L(ab+ | b*)
X = “a” . Y

Z ∈ L(a*b*)

S : a S b | S b |𝛆
X, Y ∈ L(S)
X = “a” . Y
X = Z

X = Z

2nd
iteration

X1 = aab Y = ab Z = aabX2 = aab

X1 = aab Y = ab Z = aabX2 = aab

Step 1: Generate the minimal flat automaton that accepts the
counter-example

Step 2: Intersect the constraints with the generated flat automaton

a*b*

∩ a*b*

X, Y ∈ L(ab+ | b*)
X = “a” . Y

Z ∈ L(a*b*)
X = Z

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

X, Y ∈ L(ab+ | b*)

"
X ∈ L(ab+) and Y ∈ L(ab+)
X ∈ L(ab+) and Y ∈ L(b*)
X ∈ L(b*) and Y ∈ L(ab+)
X ∈ L(b*) and Y ∈ L(b*)

X1 = aab Y = ab Z = aabX2 = aab

X, Y ∈ L(ab+ | b*)
X = “a” . Y

Z ∈ L(a*b*)
X = Z

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

X, Y ∈ L(ab+ | b*)

"
X ∈ L(ab+) and Y ∈ L(ab+)
X ∈ L(ab+) and Y ∈ L(b*)
X ∈ L(b*) and Y ∈ L(ab+)
X ∈ L(b*) and Y ∈ L(b*)

X1 = aab Y = ab Z = aabX2 = aab

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

X, Y ∈ L(ab+ | b*)

"
X ∈ L(ab+) and Y ∈ L(ab+)
X ∈ L(ab+) and Y ∈ L(b*)
X ∈ L(b*) and Y ∈ L(ab+)
X ∈ L(b*) and Y ∈ L(b*)

X = “a” . Y

Z ∈ L(a*b*)
X = Z

X ∈ L(ab+) and Y ∈ L(b*) X, Y ∈ L(ab+ | b*)
X = “a” . Y

Z ∈ L(a*b*)
X = Z

X1 = aab Y = ab Z = aabX2 = aab

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0X = “a” . Y

Z ∈ L(a*b*)
X = Z

X ∈ L(ab+) and Y ∈ L(b*)

#Y(“a”) = 0, #X(“a”) = 1

X ∈ L(ab+)
Y ∈ L(b*)

=

X1 = aab Y = ab Z = aabX2 = aab

#X(“a”): number of occurrences of “a” in X

#Y(“b”) =#X(“b”)

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

X = “a” . Y

Z ∈ L(a*b*)
X = Z

X ∈ L(ab+) and Y ∈ L(b*)

X ∈ L(ab+)

=

Z ∈ L(a*b*)

X1 = aab Y = ab Z = aabX2 = aab

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0
#Y(“a”) = 0, #X(“a”) = 1
#Y(“b”) =#X(“b”)
#Z(“a”) = #X(“a”)
#Z(“b”) = #X(“b”)

#X(“a”): number of occurrences of “a” in X

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd
iteration

X = “a” . Y

Z ∈ L(a*b*)
X = Z

X ∈ L(ab+) and Y ∈ L(b*)

SMT

Step 4: Feed the formulas to a SMT solver

SAT

#X(“b”) = 1
#Y(“b”) = 1
#Z(“a”) = 1
#Z(“b”) = 1

 X = ab
 Y = b
 Z = ab

X1 = aab Y = ab Z = aabX2 = aab

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0
#Y(“a”) = 0, #X(“a”) = 1
#Y(“b”) =#X(“b”)
#Z(“a”) = #X(“a”)
#Z(“b”) = #X(“b”)

✓ Use Z3 as a backend tool

✓ Run on the standard Kaluza & SQL injection benchmarks

• Kaluza: ~50,000 tests
Javascript symbolic execution engine

• SQL injection: 10 tests
detect SQL injections with CFG constraints

✓ Open-source tool: TRAU

Experiment Results

timeout
20s No.

finished tests

Kaluza benchmark result

Experiment Results

Kaluza benchmark result

Experiment Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

CVC4 Z3-str2 S3P TRAU

timeout

10-20s

5-10s

1-5s

0-1s

Number
of tests

Use Z3 as a backend tool

Run on Kaluza & CFG benchmarks

length bound for vars

20s

SQL Injection result

Experiment Results

1. New framework for solving string constraints:

• Based on Counter-Example Guided Abstract Refinement.

2. Open-source tool: outperforming all existing tools.

• Handle rich class of constraints: CFG membership, transducer, etc.

Over-approx Under-approx

 constraints SAT

UNSAT

Summary

Thank you!

