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Consider a webpage that has two input fields: username and password 

The code behind the webpage is the following:

diep 

1234' OR '1'='1 

SQL Injections

void Login_Authenticate(object sender, AuthenticateEventArgs e){ 
    SqlConnection con = new SqlConnection(@"Data Source=.\sqlexpress;Initial Catalog=MyDb;Integrated Security=True"); 
    
    adpt = new SqlDataAdapter(qry,con); 
    dt = new DataTable(); 
    adpt.Fill(dt); 
    if (dt.Rows.Count >= 1){ 
        Response.Redirect("index.aspx"); 
    } 
}

string stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'";

select * from Table where name = 'diep' and passwd = '1234' OR '1'='1'

always TRUE



Detect SQL Injection via String Constraints

SQL injection is to create a SQL query that contains “ or ‘1’ = '1’”

Step 1: Identify variables

Step 2: Find forbidden patterns

stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'"; 

Step 3: Transform to string constraints

Step 4: Solve the string constraints

SQL_QUERY : “select * from Table where “ EXPR

EXPR : COMP | EXPR or EXPR

COMP : TERM (=|>|<) TERM

TERM : [a-z]+[0-9]*| [0-9]+ | ‘TERM’

context free 
grammar



stmt = "select * from Table where name = '" . Name .  
                    "' and passwd = '" . Passwd . "'"

SQL_injection ∈ L(SQL_QUERY);
SQL_injection = A . " or ‘1’ = ‘1’" . B

stmt = SQL_injection

Step 3: Transform to string constraints

Step 4: Solve the string constraints

Step 1: Identify variables

Step 2: Find forbidden patterns

concatenation

SQL injection is to create a SQL query that contains “ or ‘1’ = '1’”

Detect SQL Injection via String Constraints

stmt = "select * from Table where name = ‘" + Name + "' and passwd = ‘" + Passwd + "'"; 

SQL_QUERY : “select * from Table where “ EXPR

EXPR : COMP | EXPR or EXPR

COMP : TERM (=|>|<) TERM

TERM : [a-z]+[0-9]*| [0-9]+ | ‘TERM’

membership
equality



• Detect vulnerabilities in web applications
SQL Injection
Code Injection

• Used in Program Testing, Program Verification, 
Model Checking

String Solver

✓ Applications

• Arithmetic constraints
• String equations
• Context free grammar membership
…

stmt ∈ L(SQL_QUERY);

stmt = A . " or ‘1 = 1’" . B

✓ Requirements
length(A) > 5
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1. New framework for solving string constraints: 

2. Open-source tool: outperforming all existing tools.

• Handle rich class of constraints: CFG membership, transducer, etc.

Contributions

• Based on Counter-Example Guided Abstract Refinement.

  constraints
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Over 
approximate 
constraints

Refine

Generate 
Counter-example

Restrict search 
space

Using CEGAR for string constraint solving

Overview
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Using CEGAR for string constraint solving

Overview



S : a S b | S b |𝛆
X, Y  ∈  L(S)     

X = “a” . Y   

X = Z  

Grammar

Membership

Equality

Over-approx

Running Example



Step 1: Over approximate CFG constraints to regular constraints

Over-approximation
counter-example

X, Y  ∈  L(S)     
X, Y  ∈  L( a* b*)     

Step 2: Rename each occurrence of variables in equalities

X2 = Z  
X1 = “a” . Y   

X = Z  
X = “a” . Y   

S : a S b | S b |𝛆
X, Y  ∈  L(S)     

X = “a” . Y   

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X = Z  

S : a S b | S b |𝛆

3 steps
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X = Z  
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X = Z  

3 steps
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Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

3 steps

S : a S b | S b |𝛆
X, Y  ∈  L(S)     

X = “a” . Y   

X = Z  

Step 2: Rename each occurrence of variables in equalities

X, Y  ∈  L(S)     
S : a S b | S b |𝛆

Step 1: Over approximate CFG constraints to regular constraints

X = “a” . Y   
X = Z  

X1 = “a” . Y   
X2 = Z  

X, Y  ∈  L( a* b*)     



SAT

UNSAT

"
counter-example

" correct

spurious

Norn solver 
[CAV14]

Over-approximation
counter-example

Step 3: Solve the approximate constraints

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

• original constraints unsat
• terminate

The new constraints fall into decidable fragments, can be 
handled efficiently.
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SAT
counter-example

" correct

spurious

Norn solver 
[CAV14]

Step 3: Solve the approximate constraints

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

X1 = aa Y = a Z = aX2 = a

Over-approximation

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  X1 = aa Y = a Z = aX2 = a

The new constraints fall into decidable fragments, can be 
handled efficiently.



Over-approx

  constraints

UNSAT

Under-approx

SAT

Overview

X1 = aa Y = a Z = aX2 = a



(ab)* (aab)*

• finite state automata 

• consist of a sequence of simple loops

Definition:

Flat Automata

basic concepts



X1 = aa Y = a Z = aX2 = a SAT | UNSAT
Under-approximation

Idea: search for solutions accepted by flat automata

X, Y  ∈  L(𝛆) 
X = “a” . Y   

X, Y, Z  ∈  L(a*)  

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X = Z  

Step 1: Generate the minimal flat automaton that accepts the 
counter-example

4 steps

Step 2: Intersect the constraints with the generated flat automaton

∩ a* 



X1 = aa Y = a Z = aX2 = a SAT | UNSAT
Under-approximation

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

4 steps

X1 = aa Y = a Z = aX2 = a

Step 1: Generate the minimal flat automaton that accepts the 
counter-example

Idea: search for solutions accepted by flat automata

a*

Step 2: Intersect the constraints with the generated flat automaton

∩ a* 
X, Y  ∈  L(𝛆) 
X = “a” . Y   

Z  ∈  L(a*)  
X = Z  



SAT | UNSAT
Under-approximation

X, Y  ∈  L(𝛆) 
X = “a” . Y   

Z  ∈  L(a*)  
X = Z  

a* 

X1 = aa Y = a Z = aX2 = a

Step 1: Generate the minimal flat automaton that accepts the 
counter-example

Step 2: Intersect the constraints with the generated flat automaton

4 steps

X1 = aa Y = a Z = aX2 = a

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

Idea: search for solutions accepted by flat automata

a*

∩ a*



X, Y  ∈  L(𝛆) 
X = “a” . Y   

Z  ∈  L(a*)  
X = Z  

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

|X| = 0
|Y| = 0
|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0

Step 4: Feed the formulas to a SMT solver

X1 = aa Y = a Z = aX2 = a



SAT | UNSAT
Under-approximation

SMT UNSAT

X1 = aa Y = a Z = aX2 = a

X, Y  ∈  L(𝛆) 
X = “a” . Y   

Z  ∈  L(a*)  
X = Z  

Step 3: Convert to quantifier-free Presburger formulas

|X| = 0
|Y| = 0
|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0

Step 4: Feed the formulas to a SMT solver



Over-approx Under-approx

  constraints SAT

UNSAT

a* does not work

Overview

X1 = aa Y = a Z = aX2 = a



Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

a*

Step 1: Over approximate CFG constraints to regular constraints

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

Step 2: Rename each occurrence of variables in equalities

Step 3: Refine the over-approximation



not (X1, X2, Y, Z  ∈ L(a*)) 

Step 1: Over approximate CFG constraints to regular constraints

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

a*

Step 3: Refine the over-approximation

not (X, Y, Z  ∈ L(a*)) not (X1, X2, Y, Z  ∈ L(a*)) 

Step 2: Rename each occurrence of variables in equalities

NEW



SAT

UNSAT

"

Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   
X2 = Z  
not (X1, X2, Y, Z  ∈ a*) 

Step 4: Solve the approximate constraints

Norn



Over-approximation
counter-example

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

SAT
counter-example

" correct

spurious

NornX1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   

not (X1, X2, Y, Z  ∈ a*) 

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   

not (X1, X2, Y, Z  ∈ a*) 
X2 = Z  X2 = Z  

Step 4: Solve the approximate constraints

X1 = aab Y = ab Z = aabX2 = aab



Over-approximation

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

SAT
counter-example

" correct

spurious

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   

not (X1, X2, Y, Z  ∈ a*) 

X1, X2, Y ∈ L( a* b*)     
X1 = “a” . Y   

not (X1, X2, Y, Z  ∈ a*) 
X2 = Z  X2 = Z  

Norn

Step 4: Solve the approximate constraints

X1 = aab Y = ab Z = aabX2 = aab

X1 = aab Y = ab Z = aabX2 = aab



Overview

Over-approx

  constraints

UNSAT

Under-approx

SAT

X1 = aab Y = ab Z = aabX2 = aab



SAT | UNSAT
Under-approximation

X, Y  ∈  L(ab+ | b*) 
X = “a” . Y   

Z  ∈  L(a*b*)  

S : a S b | S b |𝛆
X, Y  ∈  L(S)     
X = “a” . Y   
X = Z  

X = Z  

2nd 
iteration

X1 = aab Y = ab Z = aabX2 = aab

X1 = aab Y = ab Z = aabX2 = aab

Step 1: Generate the minimal flat automaton that accepts the 
counter-example

Step 2: Intersect the constraints with the generated flat automaton

a*b*

∩ a*b* 



X, Y  ∈  L(ab+ | b*) 
X = “a” . Y   

Z  ∈  L(a*b*)  
X = Z  

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

X, Y  ∈  L(ab+ | b*) 

"
X ∈  L(ab+) and Y  ∈  L(ab+) 
X ∈  L(ab+) and Y  ∈  L(b*) 
X ∈  L(b*)   and Y  ∈  L(ab+) 
X ∈  L(b*)   and Y  ∈  L(b*) 

X1 = aab Y = ab Z = aabX2 = aab



X, Y  ∈  L(ab+ | b*) 
X = “a” . Y   

Z  ∈  L(a*b*)  
X = Z  

SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

X, Y  ∈  L(ab+ | b*) 

"
X ∈  L(ab+) and Y  ∈  L(ab+) 
X ∈  L(ab+) and Y  ∈  L(b*) 
X ∈  L(b*)   and Y  ∈  L(ab+) 
X ∈  L(b*)   and Y  ∈  L(b*) 

X1 = aab Y = ab Z = aabX2 = aab



SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

X, Y  ∈  L(ab+ | b*) 

"
X ∈  L(ab+) and Y  ∈  L(ab+) 
X ∈  L(ab+) and Y  ∈  L(b*) 
X ∈  L(b*)   and Y  ∈  L(ab+) 
X ∈  L(b*)   and Y  ∈  L(b*) 

X = “a” . Y   

Z  ∈  L(a*b*)
X = Z  

X ∈  L(ab+) and Y  ∈  L(b*) X, Y  ∈  L(ab+ | b*) 
X = “a” . Y   

Z  ∈  L(a*b*)  
X = Z  

X1 = aab Y = ab Z = aabX2 = aab



SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0X = “a” . Y   

Z  ∈  L(a*b*)
X = Z  

X ∈  L(ab+) and Y  ∈  L(b*) 

#Y(“a”) = 0, #X(“a”) = 1

X ∈  L(ab+)
Y  ∈  L(b*) 

=

X1 = aab Y = ab Z = aabX2 = aab

#X(“a”): number of occurrences of “a” in X

#Y(“b”) =#X(“b”)



SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

X = “a” . Y   

Z  ∈  L(a*b*)
X = Z  

X ∈  L(ab+) and Y  ∈  L(b*) 

X ∈  L(ab+)

=

Z  ∈  L(a*b*) 

X1 = aab Y = ab Z = aabX2 = aab

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0
#Y(“a”) = 0, #X(“a”) = 1
#Y(“b”) =#X(“b”)
#Z(“a”) = #X(“a”)
#Z(“b”) = #X(“b”)

#X(“a”): number of occurrences of “a” in X



SAT | UNSAT
Under-approximation

Step 3: Convert to quantifier-free Presburger formulas

2nd 
iteration

X = “a” . Y   

Z  ∈  L(a*b*)
X = Z  

X ∈  L(ab+) and Y  ∈  L(b*) 

SMT

Step 4: Feed the formulas to a SMT solver

SAT

#X(“b”) = 1
#Y(“b”) = 1
#Z(“a”) = 1
#Z(“b”) = 1

  X = ab
  Y = b
  Z = ab

X1 = aab Y = ab Z = aabX2 = aab

|X| = 1 + |Y|
|X| = |Z|
|X|,|Y|,|Z| ≥ 0
#Y(“a”) = 0, #X(“a”) = 1
#Y(“b”) =#X(“b”)
#Z(“a”) = #X(“a”)
#Z(“b”) = #X(“b”)



✓ Use Z3 as a backend tool

✓ Run on the standard Kaluza & SQL injection benchmarks

• Kaluza: ~50,000 tests 
Javascript symbolic execution engine

• SQL injection:   10 tests
detect SQL injections with CFG constraints

✓ Open-source tool: TRAU

Experiment Results
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Kaluza benchmark result

Experiment Results
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Use Z3 as a backend tool

Run on Kaluza & CFG benchmarks

length bound for vars

20s

SQL Injection result

Experiment Results



1. New framework for solving string constraints: 

• Based on Counter-Example Guided Abstract Refinement.

2. Open-source tool: outperforming all existing tools.

• Handle rich class of constraints: CFG membership, transducer, etc.

Over-approx Under-approx

  constraints SAT

UNSAT

Summary



Thank you!


