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Abstract. This paper presents a novel counterexample guided abstraction refine-
ment algorithm for the automatic verification of concurrent programs. Our algo-
rithm proceeds in different steps. It first constructs an abstraction of the original
program by slicing away a given subset of variables. Then, it uses an external
model checker as a backend tool to analyze the correctness of the abstract pro-
gram. If the model checker returns that the abstract program is safe then we con-
clude that the original one is also safe. If the abstract program is unsafe, we extract
an “abstract” counter-example. In order to check if the abstract counter-example
can lead to a real counter-example of the original program, we add back to the
abstract counter-example all the omitted variables (that have been sliced away)
to obtain a new program. Then, we call recursively our algorithm on the new
obtained program. If the recursive call of our algorithm returns that the new pro-
gram is unsafe, then we can conclude that the original program is also unsafe and
our algorithm terminates. Otherwise, we refine the abstract program by remov-
ing the abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented our algo-
rithm, and run it successfully on the concurrency benchmarks in SV-COMP15.
Our experimental results show that our algorithm significantly improves the per-
formance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance of
software, to the degree that concurrent programs have become crucial parts of many ap-
plications. At the same time, concurrency gives rise to enormously complicated behav-
iors, making the task of producing correct concurrent programs more and more difficult.
The main reason for this is the large number of possible computations caused by many
possible thread (or process) interleavings. Unexpected interference among threads of-
ten results in Heisenbugs that are difficult to reproduce and eliminate. Extensive efforts
have been devoted to address this problem by the development of testing and verifi-
cation techniques. Model checking addresses the problem by systematically exploring
the state space of a given program and verifying that each reachable state satisfies a
given property. Applying model checking to realistic programs is problematic, due to
the state explosion problem. The reason is that we need (1) to exhaustively explore the
entire reachable state space in all possible interleavings, and (2) to capture and store a
large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g., [5,16,4,14,19])
approach is one of the successful techniques for verifying programs. This approach
consists in four basic steps:



– Abstraction step: Construct a finite-state program as an abstraction of the original
program using predicate abstraction (with a set of predicates) and go to the Verifi-
cation step.

– Verification step: Use a model checker to check if the constructed finite state pro-
gram satisfies the desired property. If it is the case, then the original program satis-
fies also the property and the verification algorithm terminates; otherwise extract a
counter-example and go to the Analysis step.

– Analysis Step: Check if the retuned counter example is spurious or not. If it is
not, then we have a real bug in the original program and the verification algorithm
terminates; otherwise go to the Refinement step.

– Refinement Step: If the counter-example is spurious, refine the set of used predicates
in the Abstraction step to eliminate the counter example. Return to the Abstraction
step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as SLAM
[4], BLAST [5], MAGIC [8] and CPACHECKER [6]. However, CEGAR may also suffer
from the state-space exploring problem in the case of concurrent programs due to the
large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-Example
Guided Program Verification (CEGPV)) that addresses the state-space explosion prob-
lem encountered in the verification of concurrent programs. The work-flow of our
CEGPV algorithm is given in Fig. 1. The algorithm consists of five main modules,
the abstraction, the counter-example mapping, the reconstruction and the refinement. It
also uses an external model checker tool.

The abstraction module takes as input a concurrent program P and a subset V0 of its
shared variables. It then constructs an over-approximation of the program P , called P ′,
as follows. First, it keeps variables in the set V0 and slices away all other variables of
the program P . Occurrences of the sliced variables are replaced by a non-deterministic
value. Second, some instructions, where the sliced variables occur, in the program P
can be removed.

Then, the model checker takes as input the program P ′, and checks whether it is
safe or not. If the model checker returns that P ′ is safe, then the program P is also
safe, and our algorithm terminates. If P ′ is unsafe, then the model checker returns a
counter-example π′.

The counter-example mapping module takes the counter-example π′ as its input. It
transforms the run π′ to a run π of the program resulting of the abstraction module
(using V0 as its set of shared variables).

The reconstruction module takes as input the counter-example π of the program P ′.
It checks whether π can lead to a real counter-example of P . In particular, if the program
P ′ is identical to the program P , then the algorithm concludes that the program P is
unsafe, and terminates. Otherwise, the reconstruction adds back all omitted variables
and lines of codes to create a program P1 while respecting the flow of the instructions
in π and the valuation of the variables in V0. Hence, the program P1 has as its set of
variables only the omitted ones.

The CEGPV algorithm then recursively calls itself to check the program P1 in its
next iteration. If the iteration returns that the program P1 is unsafe, then the run π leads
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Fig. 1: An overview of the CEGPV algorithm.

to a counter-example of the program P . The algorithm concludes that the program P
is unsafe and terminates. Otherwise, the run π cannot lead to a counter-example of the
program P . Then the algorithm needs to discard the run π from the program P ′.

The refinement adds π to the set of spurious counter-examples of the program P ′. It
then refines P ′ by removing all these spurious counter-examples from the set of possible
runs of P ′. The new resulting program is then given back to the model checker tools.

Our CEGPV algorithm has two major advantages. First, it reduces the number of
variables in the model-checked programs to prevent the state-space explosion problem.
Second, all the modules are implemented using code-to-code translations.

In order to evaluate the efficiency of our CEGPV algorithm, we have implemented
it as a part of an open source tool, called CEGPV, for the verification of C/pthreads
programs. We used CBMC version 5.1 as the backend tool [10]. We then evaluated
CEGPV on the benchmark set from the Concurrency category of the TACAS Soft-
ware Verification Competition (SV-COMP15) [2]. Our experimental results show that
CEGPV significantly improve the performance of CBMC, showing the potential of our
approach.

Related Work. CEGAR is one of the successful techniques used in program verifica-
tion. Our CEGPV algorithm can be seen as a novel CEGAR that can be implemented
on the top of any verification tool. In contrast with the classical CEGAR algorithms
(e.g., [9,5,14,20,15]) where the programs are abstracted using a set of predicates, our
CEGPV algorithm uses variable slicing techniques to obtain the abstract program.

Variable slicing (also known as Localization [11]) is also one of the verification
guided approaches to address the state-space exposing problem. In [20], an analysis
tool for detecting memory leaks is presented based on slicing some of the program vari-
ables. Each generated abstract program is then checked by a backend tool. RankChecker
[7] is a testing tool based on an assumption that most concurrency bugs have a small
number of variables involved. To reduce the search space, it forces processes in a con-
current program to interleave at certain points that access a subset of variables. Corral
[16] abstracts the input program by only keeping track of a subset of variables. If the
counter-example of the abstract program is spurious, Corral then refines the abstraction
by decreasing the set of omitted variables. The algorithm terminates once the counter-



example corresponds to a run of the original program. Our CEGPV algorithm also ab-
stract programs by slicing away some variables. However, if the counter-example is
spurious, then CEGPV algorithm refines the abstract program by omitting this counter-
example from the set of all its runs. Furthermore, our CEGPV algorithm has the feature
to recursively call itself in order to check if the counter-example can lead to a real one.

Abstraction refinement are fitted broadly into our CEGPV. The abstraction is re-
fined by eliminating the program path proved correct. SMPP [13] performs refinement
based on control locations in sequential program. Lazy abstraction with interpolants
[18] refines the abstract model by utilizing interpolants derived from refuting paths in
the program. ESBMC [12] abstracts all program interleavings to SMT formulas. For
each property needed to verify, ESBMC removes interleavings that do not concern to
the property. Our CEGPV performs refinement based on program states in concurrent
programs. CEGPV also applies variable slicing to reduce the number of interleavings.

2 Motivating Example

In this section, we informally illustrate the main concepts of our algorithm.
x = y = z = t1 = t2 = 0

process P:

p1: x = y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(a) A simple program P

x = y = z = 0

process P:

p1: x = *;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = *;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(b) Abstract program P1

Fig. 2: A toy example and its abstraction
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Fig. 3: Dependency
graph of P .

Fig. 2a is a simplified version of a program in the concur-
rent C benchmark in SVCOMP [2]. The program P has two
processes, called P and Q, running in parallel. The processes
communicate through five shared variables which are x, y, z, t1
and t2, ranging over the set of integers. All variables are initial-
ized to 0. The behavior of a process is defined by a list of C-like
instructions. Each instruction is composed of a unique label and
a statement. For example, in process P, the instruction p1: x =
y ? z ? 0 : 1 : 1 has p1 as a label, and x = y ? z ? 0 : 1 : 1 as
a statement. That statement is a ternary assignment in which it assigns 0 to x if both y
and z are equal to 1, and assigns 1 to x otherwise. The assertion labeled by p5 holds if
the expression t1 + t2 is different from 1, and in that case the program is declared to be
safe. Otherwise, the program is unsafe.

In order to apply our algorithm, we need first to determine a subset of program vari-
ables that will be sliced away. To that aim, we construct a dependency graph between
variables. The dependency graph consists of a number of vertices and directed edges.
Each vertex corresponds to a variable of the program. The edges describe the flow de-
pendency between these variables. The dependency graph of the program P is given in



Fig. 3. For instance, x depends on both y and z due to the two assignments labeled by
p1 and q1. Similarly, the assignment labeled by p2 creates a dependency between the
variables y and z. We use the dependency graph to decide the first set of variables to be
sliced away. In general, we keep variables that influence the safety of the program. In
the settings of the example, the variables t1 and t2 are used in the assertion at p5 and
therefore we keep track of the variables t1 and t2. Furthermore, we keep also track of
the variable x since t1 and t2 are dependent on x.

ρ:

p1 (x = 0)

p4 (t1 = 0)

q1 (x = 1)

q4 (t2 = 1)

p5 (assert false)

ϕ:

q1 (x = 1)

q4 ( t2 = 1)

p1 (x = 0)

p4 (t1 = 0)

p5 (assert false)

Fig. 4: Counter-examples of P1

Once we have the subset of variables {t1, t2,
x} to be preserved, we need to slice away the
variables {y, z}. To do that, we abstract the pro-
gram by replacing occurrences of the variables
y and z by a non-deterministic value *. Assign-
ments labeled by p1 and q1 are transformed to x
= * ? * : 0 ? 1 ? 1 and x = * ? 0 : * ? 0 ? 1, respec-
tively. We make a further optimization to trans-
form these assignments to be x = *. Since we are
not anymore keeping track of the variables y and
z, instructions which are assignments to these
variables can be removed. In this case, we re-
move the instructions labeled by p2, p3, q2 and
q3 from the abstract program. All the other in-
structions remain the same. Resulting abstract
program, called P1, is then given in Fig. 2b. P1 has only three variables t1, t2 and x, and
five instructions.

The next step of our algorithm is to feed the abstract program to a model checker.
The model checker checks whether the program is safe or not. If the program is unsafe,
the model checker returns a counter-example. In our case, since P1 is unsafe, we assume
the model checker returns a counter-example, called ρ, given in the left part of Fig. 4.

In the obtained counter-example ρ, the process P executes the instruction labeled by
p1. At that instruction, the non-deterministic symbol * returns the value 0, and therefore
the variable x is assigned to 0. Then the process P continues performing the instruction
labeled by p4, makes the value of t1 to be 0. The control then switches to the process Q
which executes the two instructions labeled by q1 and q4. They evaluate both x and t1 to
1. At the end, the assertion in the instruction labeled by p5 is checked. The expression
in the assertion, t1 + t2 != 1, is evaluated to false, so the program is unsafe.

y = z = 0

process P:

p1: assume 0 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 0 == 0

process Q:

q1: assume 1 == y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: assume 1 == 1;p5: assert false;

Fig. 5: The program Sρ

Although ρ is the
counter-example of P1, ρ

is not identified to be a
counter-example of P since
P1 is an abstraction of P . In
order to check whether ρ can
lead to a counter-example of
P , we need to add back some
of the omitted variables and
lines of codes. Adding back



this information to the counter-example ρ will result in a new program, called Sρ, that
respects the flow of the counter-example. In this case, we add y and z to ρ.

The program Sρ is given in the Fig. 5. When adding back variables, several instruc-
tions are restored such as the instructions labeled by p2, p3, q2 and q3. Variables, which
appear in the counter-example, can be discarded since their values are known. For ex-
ample, x at p1 in ρ is 0. We replace the occurrence of x in q1 by 1. We also transform
the assignment in the instruction labeled by p1 to an assumption to check whether value
of x is equal to the value of right hand side of assignment, i.e. assume 0 == y ? z ? 0 : 1 :
1. The assumption blocks the execution until the expression in assumption is evaluated
to true. Similarly, the instruction labeled by p4 is transformed to assume 0 == 0. Then,
we remove the assumptions that are trivially true such as assume 0 == 0. Since Sρ needs
to respect the order of instructions in ρ, the instruction labeled by p1 is only executed
after the instruction labeled by q3.

The model checker checks the program Sρ and returns that Sρ is safe. This means
ρ can not lead to a counter-example of P . We then need to refine P1 to exclude the
counter-example ρ from its set of possible runs.

x = t1 = t2 = 0

process P:

p1: x = *;

p4: t1 = x;

p5: assert (t1+t2 != 1);

observer :

if x == 0 then

if t1 == 0 then

if x == 1 then

if t2 == 1 then

assume false;

process Q:

q1: x = *;

q4: t2 = x;

Fig. 6: The refined program P2

We create a refinement
of the program P1, called P2
and given in Fig. 6, as fol-
lows. We use an observer
to check whether the actual
run is identical to the run ρ.
Two runs are identical if (1)
their orders of executed in-
structions are the same, and
(2) valuations of variables after each instruction are the same in the both runs. If the
actual run is identical to the run ρ, then that run is safe. For the sake of simplicity, we
model the observer as a sequence of conditional statements. After each instruction in
the run ρ, except the assertion at the end of ρ, we create a conditional statement to
re-evaluate values of variables. For instance, if x == 0 follows assignment x = * at p1,
where 0 is the value of x at instruction labeled by at p1 in ρ. If if x == 0 is passed, then
the execution can check if t1 == 1 after running assignment t1 = x at p4. Otherwise, the
execution is no longer followed by the observer. If an execution passes all conditional
statements of the observer, then the actual run is identical to ρ. The assumption assume
false at the end of observer is to prevent the execution performs assertion at p5. Hence,
P2 excludes ρ from its runs.

y = z = 0

process P:

p1: assume 1 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 1 == 1;

process Q:

q1: assume 0 == y?0:z?0:1;

q2: y = ! z;

q3: z = 1;

q4: assume 1 == 1;

p5: assert false;

Fig. 7: The program Sϕ

The model checker
checks the program P2. It
returns a counter-example,
called ϕ, as given in the
right part Fig. 4. In ϕ, the
instructions of the process
Q, which are labeled by q1
and q4, are issued first. After
that, the instructions of P,



which are labeled by p1, p4 and p5, are performed. Similar to the way we verify ρ,
we add y and z back to ϕ and construct a new program to simulate ϕ, called Sϕ. Sϕ is
presented in Fig 7. In the counter-example Sϕ, the variables x, t1 and t2 are replaced
by their values in ϕ. Then, instructions labeled by p4 and q4 are removed by the
optimization. We force that the program Sϕ respects the flow of the counter-example ϕ.
For instance, the instruction labeled by p1 only runs after the instruction labeled by q3.

π:

q1(assume true)

q2(y = 1)

q3(z = 1)

p1 (assume true)

p2 (y = 1)

p3 (z = 0)

p5 (assert false)

Fig. 8: Counter-example of Sϕ

The model checker checks the program
Sϕ. It then concludes that Sϕ is unsafe with
a proof by a counter-example, called π, given
in Fig. 8. We need to verify whether π can
lead to a counter-example of the program P
by adding more variables and lines of codes,
and then constructing a new program that re-
spects the flow of instructions in π. However,
all variables of the program P are used, so π

is a counter-example of P . Thus, P is unsafe
and the algorithm stops.

3 Preliminaries

For A a finite set, we use |A| to denote its size. Let A and B be two sets, we use f : A 7→ B
to denote that f is a function that maps any element of A to an element of B. For an
element b ∈ B and a function f : A 7→ B, we use b ∈ f to denote that there is an element
a ∈ A such that f (a) = b. For a ∈ A and b ∈ B, we use f [a←↩ b] to denote the function
f ′ where f ′(a) = b and f ′(a′) = f (a′) for all a′ 6= a.

4 Concurrent programs

In this section, we describe the syntax and semantics of programs we consider.〈c-prog〉 ::= 〈var〉+ 〈process〉+
〈var〉 ::= var x ;

〈process〉 ::= process p begin 〈inst〉∗ end
〈inst〉 ::= loc:〈stmt〉;
〈stmt〉 ::= skip

| x := 〈expr〉
| goto loc1, . . . locn
| assume 〈expr〉
| assert 〈expr〉
| if 〈expr〉
then 〈inst〉else 〈inst〉 fi

〈expr〉 ::= 〈expr〉|*

Fig. 9: The syntax of concurrent programs

Syntax. Fig. 9 gives the grammar for a C-
like programming language that we use for
defining concurrent programs. A concur-
rent program P starts by defining a set of
shared variables. Each shared variable is
defined by the command var followed by a
unique identifier. We assume that the vari-
able ranges over some (potentially infinite)
domain D. Then the program P defines a
set of processes (or threads). Each process
has a unique identifier p and its code is
a sequence consists of instructions (which
is placed between begin and end). An in-
struction ins is of the form “loc: stmt”, where loc is a label (or control location), and
stmt is a statement. We use label(ins) to denote the label loc of the instruction ins and
stmt(loc) to denote the statement stmt. We use VP to denote the set of variables, ProcP



to denote the set of processes of the program P . For a process P ∈ ProcP , let IP be the
set of instructions in the code of P and QP be the set of labels appearing in its code.
We assume w.l.o.g. that each instruction has a unique label. Let IP := ∪P∈ProcP IP, and
QP := ∪P∈ProcP QP. We assume that we dispose of a function init : Proc 7→ QP that
returns the label of the first instruction to be executed by each process.

A skip statement corresponds to the empty statement that leaves the program state
unchanged. A goto statement of the form “goto loc1, . . . locn” jumps nondeterministi-
cally to an instruction labeled by loct for some t ∈ {1, . . . ,n}. An assignment statement
(asg for short) of the form “x := expr” assigns to the variable x the current value of
the expression expr. An assumption statement (asp) of the form “assume expr” checks
whether the expression expr evaluates to true and if not, the process execution is blocked
till that the value of expr is true. An assertion statement (asr) of the form “assert expr”
checks whether the expression expr evaluates to true, and if not the execution of the
program is aborted. A conditional statement (cnd) of the form “ if 〈expr〉 then inst1
else inst2 fi” executes the instruction inst1, if the expression expr evaluates to true.
Otherwise, it executes the instruction inst2. We assume w.l.o.g. that the label of inst1
is different from the label of inst2. We assume a language of expressions expr inter-
preted over D. Furthermore, in order to allow nondeterminism, expr can receive the
non-deterministic value *. We use Expr to denote the set of all expressions in P .

Let Varexpr : Expr 7→ 2VP be a function that returns the set of variables that appearing
in a given expression. For instance, we have Varexpr(y + z + 1) = {y, z}.

Semantics. We describe the semantics informally and progressively. Let us first
consider the case of a (sequential) program Ps that has only one process P (i.e.,
ProcPs ={P}). A sequential configuration c is then defined by a pair (loc,state) where
loc ∈ QP is the label of the next instruction to be executed by the process P, and
state : VP 7→D is a function that defines the valuation of each shared variable. The initial
sequential configuration cinit(Ps) is defined by (init(P),stateinit) where stateinit(x) = 0
for all x ∈ VPs . In other words, at the beginning of the program, all variables have value
0 and the process P will execute the first instruction in its code. The transition relation
−→Ps on sequential configurations is defined as usual: For two sequential configurations
c, c′, we write c−→Ps c′ to denote that the program Ps can move from c to c′.

Now, we consider the case of the concurrent program P that has at least two pro-
cesses (i.e., |ProcP | ≥ 2). For every P ∈ ProcP , let PP be the sequential program con-
structed from P by deleting the code of any process P′ 6= P (i.e., PP contains only the
instructions of the process P). We define a function label definition q̄ : ProcP 7→ QP
that associates for each process P ∈ ProcP , the label q̄(P) ∈ QP of the next instruction
to be executed by P. A concurrent configuration (or simply configuration) c is a pair
(q̄,state) where q̄ is a label definition, and state is a memory state. We use LabelOf(c),
StateOf(c) to denote q̄ and state respectively. The initial configuration cinit(P ) is de-
fined by (q̄init ,stateinit) where q̄init(P) = init(P) for all P ∈ ProcP , and stateinit(x) = 0
for all x ∈ VP . In other words, at the beginning, each process starts at the initial label,
and all variables have value 0. We use C(P ) to denote the set of all configurations of the
program P . Then, the transition relation between configurations is defined as follows:
For two given configurations c = (q̄,state) and c′ = (q̄′,state′) and a label loc ∈ QP

of some process P, we write c loc−−→P c′ to denote that program P can move from the



configuration c to the configuration c′ by executing the instruction labeled by loc of the
process P. Formally, we have c loc−−→P c′ iff (q̄(P),state)−→PP(q̄

′(P),state′) , q̄(P) = loc,
and for every P′ ∈ (ProcP \{P}), we have q̄(P′) = q̄′(P′).

A run π of P is a finite sequence of the form c0 · loc1 · c1 · loc2 · · · locm · cm, for some
m ≥ 0 such that: (1) c0 = cinit(P ) and (2) ci

loci+1−−−−→P ci+1 for all i ∈ {0, . . . ,m− 1}. In
this case, we say that π is labeled by the sequence loc1loc2 . . . locm and that the con-
figuration cm is reachable by P . We Trace(π) and Target(π) to denote the sequence
loc1 · loc2 . . . locm in π and the configuration cm, respectively. We use ΠP to denote the
set of all runs of the program P . The program P is said to be safe is there is no run
π reaching a configuration c = (q̄,state) (i.e., Target(π) = c) such that q̄(P), for some
process P ∈ ProcP , is the label of an assertion statement of the form “assert expr”
where the expression expr can be evaluated to false at the configuration c.

5 Counter-Example Guided Program Verification

In this section, we present our Counter-Example Guided Program Verification
(CEGPV) algorithm. The CEGPV algorithm takes a program P as its input and returns
whether the program P is safe or not. The work-flow of the algorithm is given in Fig.
1. The algorithm consists of five main modules, the abstraction, the counter-example
mapping, the reconstruction and the refinement. It also uses an external model checker
as a back-end tool. Recall that VP denotes the set of variables of the program P . The
algorithm starts by selecting a subset of variables V0 ⊆ VP using a dependency graph. (
For the sake of simplicity, the dependency graph is not shown in Fig. 1.)

The abstraction takes the program P and the set V0 as its input. It then constructs an
over-approximation of the program P , called P ′, as follows. First, it keeps variables in
the set V0 and slices away all other variables of the program P . Occurrences of the sliced
variables are replaced by a non-deterministic value. Second, some instructions, where
the sliced variables occur, in the program P can be discarded. For instance, instructions
of assignments to the sliced variables can be removed. After that, the program P ′ is
given to a model checker. Observe that P ′ has V0 as its set of shared variables.

Then, the model checker takes as input the program P ′, generated by the abstrac-
tion module or the refinement module, and checks whether it is safe or not. If the model
checker returns that the program is safe, then the program P is also safe, and our al-
gorithm terminates. If the program is unsafe, then the model checker returns a counter-
example π′ of the form c0 · loc1 · c1 · loc2 · · · locm · cm.

The counter-example mapping takes the counter-example π′ as its input. It trans-
forms the run π′ to a run of the program resulting of the abstraction module.

The reconstruction takes always as input a counter-example π of the program P ′
(which results from the application of the abstraction module to the program P ). It
then checks whether π can lead to a real counter-example of P . In particular, if V0 = VP ,
i.e. no variable was sliced away from the program P , then the program P ′ is identical
to the program P . Therefore, π is also a counter-example of the program P . The al-
gorithm concludes that the program P is unsafe, and then terminates. Otherwise, the
reconstruction adds back all omitted variables (i.e., the set VP \V0) and lines of codes



to create a program P1. The program P1 also needs to respect the flow of the instruc-
tions in π. In other words, the instruction labeled by loci, for some i ∈ {1, . . . ,m}, in
the program P1 can only be executed after executing all the instructions labeled by
loc j for all j ∈ {1, . . . , i− 1}. For each run of the program P1, let c′i be the configura-
tion after executing the instruction labeled by loci. The configuration c′i needs to satisfy
StateOf(c′i)(x) = StateOf(ci)(x) for all x ∈ V0, i.e. each value of variable in the set V0
at the configuration c′i is equal to its value in the configuration ci.

The CEGPV algorithm then recursively calls itself to check the program P1 in its
next iteration. Inputs of the next iteration are the program P1, and a subset of variables
V1 ⊆ VP1 = (VP \V0), which is selected using the variable dependency graph. If the
iteration returns that the program P1 is unsafe, then the run π leads to a counter-example
of the program P . The algorithm concludes that the program P is unsafe and terminates.
Otherwise, the run π cannot lead to a counter-example of the program P . Then the
algorithm needs to discard the run π from the program P ′.

The refinement adds π to the set of spurious counter-examples of the program P ′
(resulting from the application of the abstraction module to the program P ). It then
refines the program P ′ by removing all these spurious counter-examples from the set of
possible runs of P ′. The new resulting program is then given back to the model checker.

In the following, we explain in more details each module of our CEGPV algorithm.
The counter-example mapping module is described at the end of the subsection dedi-
cated to the explanation of the refinement module (Section 5.3).

5.1 The Abstraction
[[〈c-prog〉]]ab

def
= [[〈var x〉]]+ab[[〈process〉]]+ab

[[〈var x〉]]ab
def
=

{
var x; if x ∈ V0

���
�XXXXvar x; otherwise

[[〈process〉]]ab
def
= process p begin [[〈inst〉]]∗ab end

[[〈inst〉]]ab
def
= loc: [[〈stmt〉]]ab;

[[skip]]ab
def
= skip

[[goto loc1, . . . , locn]]ab
def
= goto loc1, . . . , locn

[[〈x := 〈expr〉]]ab
def
=

{
skip if x /∈ V0
x := [[〈expr〉]]ab otherwise

[[assume〈expr〉]]ab
def
= assume [[〈expr〉]]ab

[[assert〈expr〉]]ab
def
= assert [[〈expr〉]]ab

[[if 〈expr〉 then 〈inst1〉
else 〈inst2〉 fi]]ab

def
=

if [[〈expr〉]]ab then [[〈inst1〉]]ab
else [[〈inst2〉]]ab fi

[[〈expr〉]]ab
def
=

{
∗ if Varexpr(expr)∩ (VP0 \V0) 6=∅
expr otherwise

Fig. 10: Translation map [[.]]ab

Given a concurrent program P and
a subset of variables V0 ⊆ VP , the
abstraction transforms the program
P into a new program P ′ by slicing
away all variables in the set VP \V0
and some lines of codes. In partic-
ular, we define a map function [[.]]ab
that rewrites the program P into P ′.
The formal definition of the map
[[.]]ab is given in Fig. 10. In the fol-
lowing, we informally explain [[.]]ab.

The map [[.]]ab keeps only the
variables in V0 and removes all other variables of P . The map [[.]]ab also keeps the same
number of processes as in the program P , and transforms the code of each process of P
to a corresponding process in the program P ′.

For each instruction in a process, the map [[.]]ab keeps the label and transforms the
statement in that instruction. The map [[.]]ab replaces occurrences of sliced variables in
the statement by the non-deterministic value *. First, the skip and goto statements re-
main the same since they do not make use of any variable. Second, for an assignment
statement of the form “x := expr”, if the variable x is not in V0, then that statement is
transformed to the skip statement. If at least one discarded variable occurs in the expres-
sion expr, then the assignment is transformed to “x := ∗”. Otherwise, the assignment



remains the same. Third, for both an assumption statement of the form “assume expr”
and an assertion of the form “assert expr”, the map [[.]]ab replaces the expression
expr by the nondeterministic value *, if at least one discarded variable occurs in expr.
Otherwise, the assumption and assertion remain the same. For a conditional statement,
the map [[.]]ab transforms its guard to be non-deterministic if it makes use of one of
the discarded variables. The consequent instruction and alternative instruction are also
transformed in a similar manner by the map [[.]]ab. Finally, we remove any instruction
that trivially does not affect the behaviors of the program [[P ]]ab such as skip statements.

Lemma 1. If [[P ]]ab is safe, then P is safe.

5.2 The Reconstruction
[[〈c-prog〉]]co

def
= var cnt;[[〈var x〉]]+co[[〈process〉]]+co

[[〈var x〉]]co
def
=

{
var x; if x /∈ V0

���XXXvar x; otherwise

[[〈process〉]]co
def
= process p begin [[〈inst〉]]co end

[[〈inst〉]]co
def
=

{
[[loc : 〈stmt〉]]co,ab if loc ∈ I[[P ]]ab

[[loc : 〈stmt〉]]co,oth; otherwise

[[loc : 〈stmt〉]]co,oth
def
=


loc: if (cnt == 0) then [[〈stmt〉]]0co,oth; else
. . .
if (cnt == m) then [[〈stmt〉]]mco,oth;
else skip; fi; . . .fi;

[[loc : 〈stmt〉]]co,ab
def
=



loc: if (cnt +1 ∈ IndexOf(loc) ∧ cnt == 0) then

[[〈stmt〉]]0co,ab; else
. . .
if (cnt +1 ∈ IndexOf(loc) ∧ cnt == m−1) then

[[〈stmt〉]]m−1
co,ab; else assume false; fi; . . .fi;

newloc : cnt := cnt +1;

[[skip]]ico,−
def
= skip where − ∈ {ab,oth}

[[goto loc1, . . . , locn]]
i
co,−

def
= goto loc1, . . . , locn where − ∈ {ab,oth}

[[assume 〈expr〉]]ico,−
def
= assume [[〈expr〉]]cco where − ∈ {ab,oth}

[[assert 〈expr〉]]ico,−
def
= assert [[〈expr〉]]cco where − ∈ {ab,oth}

[[x := 〈expr〉]]ico,ab
def
= assume StateOf(ci+1)(x) == [[〈expr〉]]ico

[[x := 〈expr〉]]ico,oth
def
= x := [[〈expr〉]]ico

[[if 〈expr〉 then 〈inst1〉
else 〈inst2〉 fi]]ico,ab

def
=

{
assume [[〈expr〉]]ico == true; [[〈inst1〉]]co if label(inst1) ∈ LabelOf(ci+1)

assume [[〈expr〉]]ico == false; [[〈inst2〉]]co otherwise
[[if 〈expr〉 then 〈inst1〉
else 〈inst2〉 fi]]ico,oth

def
=

if [[〈expr〉]]ico then [[〈inst1〉]]co
else [[〈inst2〉]]co fi

[[〈expr〉]]ico
def
= 〈expr〉[∀x ∈ V0 : x←↩ StateOf(ci)(x)]

Fig. 11: Translation map [[.]]co

Let π be a counter-example of the program [[P ]]ab of the form c0 · loc1 · c1 ·
loc2 · · · locm · cm. The reconstruction transforms P to a new program P1 by forcing P
to respect the sequence of configurations and labels in π. In particular, we define a map
function [[.]]co to rewrite the program P into the program P1. The formal definition of the
map [[.]]co is given in Fig 11. For a label loc, let IndexOf(loc) = {i ∈ {1, . . . ,m}| loci =
loc} be the set of positions where the label loc occurs in the run π. Let newloc be a
function that returns a fresh label that has not used so far.

The map [[.]]co starts by adding a new variable cnt. The variable cnt is used to keep
track of the execution order of the instructions in π. All variables in V0 are removed by
the map [[.]]co since their values is determined by π. The map [[.]]co also keeps the same
number of processes as in the program P , and transforms the code of each process.



The map [[.]]co transforms instructions in each process as follows. Instructions that
occur in [[P ]]ab, are transformed by the map [[.]]co,ab, while other instructions are trans-
formed by the map [[.]]co,oth. For an instruction of the form “loc : stmt”, the map [[.]]co,oth
keeps the label loc and creates m+1 copies of the statement stmt. The i-th copy of stmt,
with i ∈ {0, . . . ,m}, is executed after reaching the configuration ci in the run π. There-
fore, the i-th copy only can be only executed under the condition “cnt == i”. Then, the
statement stmt is transformed based on the configuration ci in the run π, denoted by
[[.]]ico,oth. Similarly, the map [[.]]co,ab keeps the label loc and creates m copies of the state-
ment stmt (which corresponds to number of instructions in the run π). The i-th copy of
stmt, with i ∈ {1, . . . ,m}, is executed if the label loc appears at position i in the run π.
Therefore, the i-th copy can be executed under the condition “cnt + 1 ∈ IndexOf(loc)”
(i.e., the label loc appears at the position cnt +1) and that cnt = i−1 (i.e., after reach-
ing the configuration ci−1). Then, the map [[.]]co,ab transforms the statement stmt based
on the configurations ccnt−1 and ccnt (i.e, the configurations before and after executing
the instruction labeled by loc) in the run π, denoted by [[.]]cnt

co,ab. The variable cnt is then
increased by one to denote that one more instruction in the run π has been executed.

In general, the map [[.]]ico,ab, for some i ∈ {0, . . . ,m− 1} rewrites all expressions in
statements. The skip and goto statement remain the same. For both an assertion of the
form “assert expr” and assumption “assume expr”, [[.]]cco,ab transforms their expres-
sions expr. For an assignment of the form “x := expr”, it rewrites that assignment by
an assumption checking that, the value of x in the configuration ci+1 is equal to the
value of expr at the configuration ci. For a conditional statement of the form if 〈expr〉
then inst1 else inst2 fi”, [[.]]cco,ab, we first check which branch has been token in the
run π. To do that, we check the labels appearing in the configuration ci+1. After that,
we add an assumption to check whether the branch has been correctly selected in the
counter-example. if expr is evaluated to true at the configuration ci and the label of
inst1 appears at the configuration ci+1, then it executes the instruction [[inst1]]

i
co,ab. Oth-

erwise, it executes the instruction [[inst2]]
i
co,ab. Finally, all occurrences of variables in V0

in any expressions expr are replaced by their values in the configuration ci.
The map [[.]]ico,oth, for some i ∈ {0, . . . ,m}, transforms statements as follows. The

skip and goto statement remain the same. For assignment, assumption, and assertion,
[[.]]ico,oth rewrites expressions in these statements. For a conditional statement, it also
rewrites the guards, the consequent instruction and the alternative instruction. The ex-
pression is transformed by replacing occurrences of variables in V0 in that expression
by their values in the configuration ci.

Lemma 2. If [[P ]]co is unsafe, then P is unsafe.

5.3 The Refinement

Given a set of runs R of [[P ]]ab, the refinement module constructs a program P ′ from
[[P ]]ab by discarding the set of runs in R from the set of possible runs of [[P ]]ab. Before
giving the description of this module, we introduce some notations and definitions.

For a run π of the form c0 · loc1 · c1 . . . locm · cm, let Loc(π) = {loc1, . . . , locm} be the
set of all labels occurring in π, and Con(π) = {c0,c1, . . . ,cm} be the set of all configura-
tions in π. Let Rloc =

⋃
π∈R Loc(π) and Rcon =

⋃
π∈R Con(π). Let Prefix(π) = {c0 · loc1 ·



c1 . . . loci · ci|i ∈ {0, . . . ,m−1}} be the set of prefixes of π and Rprefix =
⋃

π∈R Prefix(π)
be the set of all prefixes of all runs in R.

start: goto v1,v2, . . . ,vn;
. . .
vi: for all x ∈ V0: x := StateOf(Target(vi))(x);

goto (vi,P1), . . . ,(vi,Pm);
. . .
(vi,Pj): if Reach(vi,Pj) 6=∅ then

loc := LabelOf(Target(vi))(Pj);
if stmt(loc) of the form “x := *” then

x := *;
assume x /∈ {StateOf(c)(x)|c ∈ Next(vi, loc)};

else assume false ; fi;
label := ∗;
assume label ∈ Reach(vi,Pj);
flag := 1;
for all P ∈ Proc[[P ]]ab

\{Pj}
label := LabelOf(Target(vi)) (P);

fi;
assume false ;
. . .

. . .

Fig. 12: Pseudocode of Observer with V =
{v1, . . . ,vn} and Proc[[P ]]ab

= {P1, . . . ,Pm}

Then, we construct a graph (or a tree)
GR to represent in concise manner the
set of runs in R. The graph GR = (V,E)
consists of a number of vertices V and
directed edges E where V = Rprefix and
E = {(v,v′)|∃loc∈Rloc,c∈Rcon and v′=
v · loc ·c}. In other words, each vertex cor-
responds to a prefix in Rprefix, and each
edge describes the transition from one
prefix to another one.

Let v ∈ V , P ∈ Proc[[P ]]ab
, and loc ∈

QP. Let Next(v, loc) = {c|c ∈ Rcon : v ·
loc · c ∈ (V ∪ R)} be the function that
returns the set of configurations which
can be reached from v through exe-
cuting the instruction labeled by loc.
Let Reach(v,P) = {loc|loc ∈ QP,∃c ∈
C([[P ]]ab) and ∃v′ ∈ Π([[P ]]ab) : (v′ = v ·
LabelOf(Target(v))(P) · c) ∧ (v′ /∈ (V ∪R)) ∧ (loc = LabelOf(c)(P))} be the function
that returns the set of all possible labels loc of the process P that can be reached by a
run v′ /∈ R∪V which is an extension of the prefix v by executing an instruction of the
process P. In order to force the execution of [[P ]]ab to perform a different run than the
ones in R, we make sure that [[P ]]ab follows the prefix v ∈ Rprefix, and then performs the
instruction of the process P that leads to a new prefix p′ which was not part of Rprefix
or R. Then, we create the output program P ′ of the refinement module from [[P ]]ab by
adding (1) an observer process to simulate the execution of the prefix v′, and (2) a
controller per process to continue execution of each process from the reached location
after executing the prefix v′. We add a new variable, called label, used by the observer
to communicate to each controller where the execution will resume for each process
after leaving the observer.

We construct an observer as given in Fig. 12. The observer is executed before any
processes in [[P ]]ab. It starts by non-deterministically jumping to a node vi (representing
a prefix of a run in R), where vi represents a vertex of GR. At the node vi, values of
variables are updated to the valuation at Target(vi). Then, the observer decides, in non-
deterministic manner, to execute an instruction of a process Pj ∈ [[P ]]ab. If the execution
of an instruction of Pj, from the prefix vi, does not lead a new prefix which is not in
R∪Rprefix (i.e., Reach(v,Pj) is empty), then the execution of the observer terminates
(and so of the program P ′). If Reach(v,Pj) is not empty, we first distinguish the case
where the next instruction to be executed by Pj is a non-deterministic assignment to
some variable x. Then, the observer ensures that the new value assigned to x is different
from its value in any configuration which can be reached from vi through executing this
non-deterministic assignment by Pj. After that, the observer communicates the new
label of Pj by setting the variable label to it. Finally, it sets the variable f lag to one



to enable the execution of the other processes and communicates to them their starting
instruction by setting the variable label.

assume flag == 1;
if label ∈QP then goto label;
else assume false ;
. . .

Fig. 13: Pseudocode of Con-
troller of the process P

Each process P in [[P ]]ab is controlled by a con-
troller, given in Fig. 13. The controller is placed at the
top of the code of P. The controller then checks if the
label stored in the variable label is in indeed belongs
to P, if it is the case, it jumps to that label. Otherwise,
P needs to wait until one of its label is written.

Finally, we can easily define a mapping map that
maps any run of P ′ to a run of [[P ]]ab. This mapping map is used in the Counter-example
mapping module. The formal definition of map is given in the appendix. We extend the
definition of the mapping map to sets of runs in the straightforward manner.

Lemma 3. map(Π(P ′)) = Π([[P ]]ab)\R.

6 Optimizations

In this section, we present two optimizations of our CEGPV algorithm. The first opti-
mization concerns the reduction of the number of iterations of our GEGPV algorithm
by considering several counter-examples instead of one at each iteration. The second
optimization concerns an efficient implementation of the reconstruction and refinement
modules when considering SMT/SAT based model-checkers such as CBMC [10].
Combining counter-examples. Our reconstruction module takes as input a counter-
example π of the form c0 · loc1 ·c1 · loc2 · · · locm ·cm of the program [[P ]]ab, and construct
the program P1 which needs to respect the flow of the instructions in π and also the
evaluation of the set of shared variables in V0. To do so efficiently, we drop the con-
straint that the program P1 should follow the valuations of the shared variables in V0
in our code-code translation [[.]]co. This means that the constructed program P1 should
only make sure to execute the instruction labeled by loci, for some i ∈ {1, . . . ,m}, after
executing all the instructions labeled by loc j for all j ∈ {1, . . . , i− 1}. We also modify
the refinement module to discard all the runs π′ in the set of runs of [[P ]]ab such that
Trace(π′) = Trace(π) in case that the program P1 is declared safe by model-checker.

We can furthermore optimize our CEGPV algorithm by not imposing any order on
the execution of two instructions labeled by loci and loc j if they can be declared to be
independent (as done in stateless model-checking techniques [3])
SMT based optimization. The CEGPV algorithm can be integrated into SMT/SAT
based model-checkers such as CBMC [10]. Recall that in Section 5.2, we force a pro-
gram running in a specific order of instructions, and in Section 5.3, we forbid that order
of instructions in a program. These operations can be easily done performed using clock
variables [17]. Indeed, for each label loc in the program, we associate to a clock vari-
able clockloc ranging over the naturals. The clock variable clockloc is assigned 0 if the
instruction labeled by loc is not executed. Given labels loc1 and loc2, in order to force
the execution of the instruction labeled by loc1 before the execution of the instruction
labeled by loc2, we need only to make sure that 0 < clockloc1 and clockloc1 < clockloc2 .
In the similar way, we can write a formula to force the SMT/SAT based model checker
to returns a counter-example different from the already encountered ones.



7 Experiment Results

In order to evaluate the efficiency of our CEGPV algorithm, we have implemented it
as a part of an open source tool, called CEGPV [1], for the verification of C/pthreads
programs. We used CBMC version 5.1 as the backend tool [10]. We then evaluated
CEGPV on the benchmark set from the Concurrency category of the TACAS Software
Verification Competition (SV-COMP15) [2]. The set consists of 1003 C programs.

We have performed all experiments on an Intel Core i7 3.5Ghz machine with 16GB
of RAM. We have used a 10GB as memory limit and a 800s as timeout parameter for
the verification of each program. In the following, we present two sets of results. The
first part concerns the unsafe programs and the second part concerns safe ones. In both
parts, we compare CEGPV results to the ones obtained using CBMC 5.1 tool [10]. To
ensure a faire comparison between the two tools, we use the same loop-unwinding and
thread duplication bounds for each program.

Table 1 shows that CEGPV is highly competitive with CBMC. We observe that,
for unsafe programs, CEGPV significantly outperforms CBMC. CEGPV is more than
10 times faster (on average) than CBMC, except for few small programs. CEGPV also
manages to verify almost all the unsafe benchmarks (except one) while CBMC fails in
the verification of 10 programs due to timeout. For safe benchmarks, CEGPV still out-
performs CBMC in the running time. In many programs, CEGPV succeeds to prove the
safety of several programs (except 20 programs), while CBMC fails to prove the safety
of 41 programs. Finally, we observe that, for the benchmark pthread− lit, the results of
both tools are almost the same. The reason is that the programs in that benchmark only
use few variables. Therefore, CEGPV does not slice away variables in these programs.CBMC 5.1 CEGPV

sub-catergory #programs pass fail time pass fail time
pthread-wmm-mix-unsafe 466 466 0 40301 466 0 1076
pthread-wmm-podwr-unsafe 16 16 0 286 16 0 21
pthread-wmm-rfi-unsafe 76 76 0 958 76 0 141
pthread-wmm-safe-unsafe 200 200 0 12578 200 0 917
pthread-wmm-thin-unsafe 12 12 0 252 12 0 15
pthread-unsafe 17 12 5 441 17 0 302
pthead-atomic-unsafe 2 2 0 2 2 0 2
pthread-ext-unsafe 8 4 4 7 8 0 7
pthread-lit-unsafe 3 2 1 3 2 1 2
pthread-wmm-rfi-safe 12 12 0 3154 12 0 138
pthread-wmm-safe-safe 104 102 2 352 104 0 114
pthread-wmm-thin-safe 12 12 0 28 12 0 12
pthread-safe 14 7 7 124 13 1 63
pthead-atomic-safe 8 7 1 76 8 0 10
pthread-ext-safe 45 19 26 938 31 14 569
pthread-lit-safe 8 3 5 8 3 5 5

Table 1: Performance of CEGPV in comparison to CBMC on benchmarks of the SV-COMP15
Concurrency category [2]. Each row corresponds to a sub-category of the SV-COMP15 bench-
marks, where we report the number of checked programs. The column pass gives the number of
correct answers retuned by each tool. An answer is considered to be correct for a (un)safe pro-
gram if the tool return “(un)safe”. The columns f ail report the number of unsuccessful analyses
performed by each tool. An unsuccessful analysis includes crashes, timeouts. The columns time
gives the total running time in seconds for the verification of each benchmark. Observe that we
do not count, in the total time, the time spent by a tool when the verification fails.
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